2023年度高一数学优秀教案13篇【精选推荐】

高一数学优秀教案数学教案-方差第一课时素质教育目标(一)知识教学点使学生了解方差、标准差的意义,会计算一组数据的方差与标准差。(二)能力训练点1.培养学生的下面是小编为大家整理的高一数学优秀教案13篇,供大家参考。

高一数学优秀教案13篇

高一数学优秀教案篇1

数学教案-方差

第一课时

素质教育目标

(一)知识教学点

使学生了解方差、标准差的意义,会计算一组数据的方差与标准差。

(二)能力训练点

1.培养学生的计算能力。

2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力。

(三)德育渗透点

1.培养学生认真、耐心、细致的学习态度和学习习惯。

2.渗透数学来源于实践,又反过来作用于实践的观点。

(四)美育渗透点

通过本节课的教学,渗透了数学知识的抽象美及反映在图像上的形象美,激发学生对美好事物的追求,岣哐?STRONG>数学美的鉴赏力。

重点·难点·疑点及解决办法

1.教学重点:方差概念。

2.教学难点 :方差概念。

3.教学疑点:学生不易理解为什么要用方差去描述一组数据的波动大小,为什么不可以用各数据与其平均数的差的来和来衡量这组数据的波动大小呢?为什么对各数据与其平均数的差不取其绝对值,而将其平方呢?对这些问题教师在剖析方差定义时要讲清楚。

4.解决办法:教师要讲清方差,标准差的意义,即它们都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的仅是这两组数据的个数相等,平均数相等或比较接近时的情况。

教学步骤

(一)明确目标

前面我们学习了平均数、众数及中位数,它们都是描述一组数据的集中趋势的量,这节课我们将进一步学习衡量样本(或一组数据)和总体的另一类特征数——方差、标准差及其计算。

这种开门见山式引入课题,能迅速将学生的注意力集中起来,进入新课讲解。

(二)整体感知

对于一组数据来说,我们除了关心它的集中趋势以外,还关心它的波动大小。衡量这个波动大小的最常用的特征数,就是方差和标准差。

(三)教学过程

1.请同学们看下面的问题:(用幻灯出示)

两台机床同时生产直径是40毫米的零件,为了检验产品质量,从产品中各抽出10件进行测量,结果如下(单位:毫米)

机床甲

40

39.8

40.1

40.2

39.9

40

40.2

39.8

40.2

39.8

机床乙

40

40

39.9

40

39.9

40.2

40

40.1

40

39.9

上面表中的数据如图所示

教师引导学生观察表格中的数据和图,提出问题:怎样能说明在使所生产的10个零件的直径符合规定方面,哪个机床做得好呢?

对于这个问题,学生会马上想到计算它们的平均数。教师可把学生分成两级分别计算这两组数据的平均数。(请两名同学到黑板计算)

计算的结果说明两组数据的平均数都等于规定尺寸40毫米。这时教师引导学生思考,这能说明两个机床做的一样好吗?不能!我们再观察上图(给学生充分的时间观察,找出左右两图的区别)从图中看到,机床甲生产的零件的直径与规定尺寸偏差较大,偏离40毫米线较多;机床乙生产的零件的直径与规定尺寸偏差较小,比较集中在40毫米线的附近。这

说明,在使所生产的10个零件的直径符合规定方面,机床乙比机床甲要好。

教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小(即偏离平均数的大小).

通过引例的学习,使学生理解为什么要研究数据波动的大小,为提出方差概念做好了准

备。

2.方差概念

教师讲解,为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:

设在一组数据 中,各数据与它们的平均数 的差的平方分别是 ,那么我们用它们的平均数,即用

来衡量这组数据的`波动大小,并把它叫做这组数据的方差。一组数据方差越大,说明这组数据波动越大。教师要剖析公式中每一个元素的意义,以便学生理解和掌握。

在学生理解方差概念时,可能会提出疑问:为什么要这样定义方差?(教师说明,在表示各数据与其平均数的倔离程度时,为了防止正偏差与负偏差的相互抵消)为什么对各数据与其平均数的差不取其绝对值,而要将它们平方?(教师说明,这主要是因为在很多问题里,含有绝对值的式子不便于运算,且在衡量一组数据波动大小的“功能”上,方差更强些)为什么要除以数据个数n?(是为了消除数据个数的影响).

在学生理解了方差概念之后,再回到了引例中,通过计算机床甲、乙两组数据的方差,再根据理论说明哪个机床做得更好。

教师范解

从 知道,机床甲生产的10个零件直径比机床乙生产的10个零件直径波动要大。

这样做使学生深刻体会到数学来源于实践,又反过来作用实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识。

3.例1 (用幻灯出示)已知两组数据:

甲:9.9 10.3 9.8 10.1 10.4 10 9.8 9.7

乙:10.2 10 9.5 10.3 10.5 9.6 9.8 10.1

分别计算这两组数据的方差。

让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名好学生到黑板计算。

解:根据公式②(取 ),有

从 知道,乙组数据比甲组数据波动大。

4.标准差概念

在有些情况下,需要用到方差的算术平方根

并把它叫做这组数据的标准差。它也是一个用来衡量一组数据的波动大小的重要的量。

教师引导学生分析方差与标准差的区别与联系:

计算标准差要比计算方差多开一次平方,但它的度量单位与原数据一致,有时用它比较方便。

课堂练习 教材P165中(1)、(2)

(四)总结、扩展

知识小结:通过这节课的学习,使我们知道了对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小;而描述一组数据的波动大小的量不止一种,最常用的是方差和标准差。方差与标准差这两个概念既有联系又有区别。

方法小结:求一组数据方差的方法;先求平均数,再利用③求方差,求一组数据标准差的方法:先求这组数据的方差,然后再求方差的算术平方根。

布置作业

教材P173中1,2(1)(2)

板书设计

高一数学优秀教案篇2

一、教学目的

1.使学生了解方差、标准差的意义,会计算一组数据的方差与标准差。

2.使学生了解样本方差、样本标准差、总体方差的意义。

二、教学重点、难点

重点:方差、标准差、样本方差、样本标准差、总体方差的意义。

难点:样本方差、样本标准差的计算。

三、教学过程

复习提问

计算一组数据的平均数有哪些方法?

引入新课

在很多实际问题中,只知道一组数据的平均数是不够的,还需要知道这组数据的波动大小。如何了解数据的波动大小?这正是我们要解决的问题。

新课

引例 两台机床同时生产直径是40毫米的零件。为了检验产品质量,从产品中抽出10件进行测量,结果如下(单位:毫米):

表中数据表成如下形式:

可在此处让学生用公式②分别计算这两组数据的平均数(还可提问学生a取什么值最好,这样学生能在教师的启发下得到a=40最合适).当学生算出如下平均数:

让学生思考,两组数据的平均数都等于规定尺寸40毫米时,甲、乙两机床性能是否都一样好?提出问题让学生议议后,再引导学生看图1,让学生认识到“机床甲生产的零件的直径与规定尺寸编差较大,偏离40毫米线较多;机床乙生产的零件的直径与规定尺寸的偏差较小,比较集中在40毫米线的附近。”这说明,在使所生产的10个零件的直径符合规定方面,机床乙比机床甲要好。

这反映出,对一组数据,除需要了解它们的平均水平以外,还常常需要了解它们的波动大小(即偏离平均数的大小).

在此处要告诉学生:描述一组数据的波动大小,可以采用不止一种办法。本课介绍“方差”即是一种方法。即:

来衡量这组数据的波动大小,并把它叫做这组数据的方差。

要强调“一组数据方差越大,说明这组数据波动越大”。条件许可时,还可介绍③式可表示为:

接下来可以请两个学生计算引例中机床甲、乙两组数据的方差。

从0.026>0.008可以比较出,机床甲生产的10个零件直径比机床乙生产的10个零件直径波动要大。(接下来教师再给出如下例题。)

例1 已知两组数据:

分别计算这两组数据的方差。

讲此例后,要强调求解步骤为:

(1)求平均数;(2)求方差;(3)比较方差得出结论。

此后接前面问题说,用来衡量一组数据的波动的方法还可用一组数据的标准差,即

公式④(即标准差)也是用来衡量一组数据波动大小的重要的量。

在本节引例中,两组数据的标准差,可让学生算一下,得出:

说明:计算标准差要比计算方差多开一次平方,但它的度量单位与原数据一致,有时用它比较方便。

小结

1.本课学了计算一组数据的方差的公式③.

2.本课在方差的基础上又学了计算一组数据的标准差的公式④.

练习:选用课本练习题。

作业 :选用课本习题。

四、教学注意问题

要注意通过例题讲好求方差题目的解题格式。

高一数学优秀教案篇3

教学目标:①掌握对数函数的性质。

②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。

③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。

教学重点与难点:对数函数的性质的应用。

教学过程

⒈复习提问:对数函数的概念及性质。

⒉开始正课

1 比较数的大小

例 1 比较下列各组数的大小。

⑴ , (a>0,a≠1)

⑵ ,logЛ ,lnЛ

师:请同学们观察一下⑴中这两个对数有何特征?

生:这两个对数底相等。

师:那么对于两个底相等的对数如何比大小?

生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

师:对,请叙述一下这道题的解题过程。

生:对数函数的单调性取决于底的大小:当0

调递减,所以> ;当a>1时,函数y=logax单调递

增,所以

板书:

解:Ⅰ)当0

∵< ∴>

Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

∵< ∴

师:请同学们观察一下⑵中这三个对数有何特征?

生:这三个对数底、真数都不相等。

师:那么对于这三个对数如何比大小?

生:找“中间量”, >0,lnЛ>0,logЛ1,

(3x+3)

师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要使函数有意义。若函数中含有分母,分母不为零;有偶次根式,被开方式大于或等于零;若函数中有对数的形式,则真数大于零,如果函数中同时出现以上几种情况,就要全部考虑进去,求它们共同作用的结果。)生:分母2x-1≠0且偶次根式的被开方式≥0,且真数x>0。

板书:

解:∵   2x-1≠0      x≠

≥0 ,  x≤

x>0        x>0

∴x(0,)∪(,〕

师:接下来我们一起来解这个不等式。

分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,

再根据对数函数的单调性求解。

师:请你写一下这道题的解题过程。

生:

解:  x2+2x-3>0      x1

(3x+3)>0    ,   x>-1

x2+2x-30,a≠1)

师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。

下面请同学们来解⑴。

生:此函数可看作是由y= logu, u= x- x2复合而成。

板书:

解:⑴∵u= x- x2>0, ∴0

u= x- x2=-(x-)2+, ∴0

∴y= logu≥5=2

∴y≥2

x    x(0,]   x[,1)

u= x- x2

y= logu

y=log(x- x2)

函数y=log(x- x2)的单调递减区间(0,],单调递 增区间[,1)

注:研究任何函数的性质时,都应该首先保证这个函数有意义,否则

函数都不存在,性质就无从谈起。

师:在⑴的基础上,我们一起来解⑵。请同学们观察一下⑴与⑵有什

么区别?

生:⑴的底数是常值,⑵的底数是字母。

师:那么⑵如何来解?

生:只要对a进行分类讨论,做法与⑴类似。

板书:略。

⒊小结

这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能

通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。

⒋作业

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a为常数)

⑵已知函数y=loga(x2-2x),(a>0,a≠1)

①求它的单调区间;②当0

⑶已知函数y=loga (a>0, b>0, 且 a≠1)

①求它的定义域;②讨论它的奇偶性;  ③讨论它的单调性。

⑷已知函数y=loga(ax-1) (a>0,a≠1),

①求它的定义域;②当x为何值时,函数值大于1;③讨论它的

单调性。

5、课堂教学设计说明

这节课是安排为习题课,主要利用对数函数的性质解决一些问题,整个一堂课分两个部分:一 。比较数的大小,想通过这一部分的练习,

培养同学们构造函数的思想和分类讨论、数形结合的思想。二。函数的定义域, 值 域及单调性,想通过这一部分的练习,能使同学们重视求函数的定义域。因为学生在求函数的值域和单调区间时,往往不考虑函数的定义域,并且这种错误很顽固,不易纠正。因此,力求学生做到想法正确,步骤清晰。为了调动学生的积极性,突出学生是课堂的主体,便把例题分了层次,由易到难,力求做到每题都能由学生独立完成。但是,每一道题的解题过程,老师都应该给以板书,这样既让学生有了获取新知识的快乐,又不必为了解题格式的不熟悉而烦恼。每一题讲完后,由教师简明扼要地小结,以使好学生掌握地更完善,较差的学生也能够跟上。

高一数学优秀教案篇4

《简单的三角恒等变换》教案

教学准备

教学目标

熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。

掌握两角和与差的正、余弦公式,能用公式解决相关问题。

教学重难点

熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。

教学过程

复习

两角差的余弦公式

用- B代替B看看有什么结果?

高一数学优秀教案篇5

平方差公式

教学建议

一、知识结构

二、重点、难点分析

本节教学的重点是掌握公式的结构特征及正确运用公式。难点是公式推导的理解及字母的广泛含义。平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础。

1.平方差公式是由多项式乘法直接计算得出的:

与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项。合并同类项后仅得两项。

2.这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差。公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式。

只要符合公式的结构特征,就可运用这一公式。例如

在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了。

3.关于平方差公式的特征,在学习时应注意:

(1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数。

(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方).

(3)公式中的和可以是具体数,也可以是单项式或多项式。

(4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算。

三、教法建议

1.可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的`是激发学生的学习兴趣,使学生能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养学生观察、概括的能力。

2.通过学生自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的平方差,而另两项恰是互为相反数,合并同类项时为零,即

(a+b)(a-b)=a2+ab-ab-b2=a2-b2.

这样得出平方差公式,并且把这类乘法的实质讲清楚了。

3.通过例题、练习与小结,教会学生如何正确应用平方差公式。这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(1-2x),

(1+2x)(1-2x)=12-(2x)2=1-4x2

↓ ↓ ↓ ↓ ↑ ↑

(a + b)(a - b)=a2- b2.

这样,学生就能正确应用公式进行计算,不容易出差错。

另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养学生解题的灵活性。

教学目标

1.使学生理解和掌握平方差公式,并会用公式进行计算;

2.注意培养学生分析、综合和抽象、概括以及运算能力。

教学重点和难点

重点:平方差公式的应用。

难点:用公式的结构特征判断题目能否使用公式。

教学过程 设计

一、师生共同研究平方差公式

我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子。

让学生动脑、动笔进行探讨,并发表自己的见解。教师根据学生的回答,引导学生进一步思考:

两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?

(当乘式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差)

继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算。以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式。

在此基础上,让学生用语言叙述公式。

二、运用举例 变式练习

例1 计算(1+2x)(1-2x).

解:(1+2x)(1-2x)

=12-(2x)2

=1-4x2.

教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么。

例2 计算(b2+2a3)(2a3-b2).

解:(b2+2a3)(2a3-b2)

=(2a3+b2)(2a3-b2)

=(2a3)2-(b2)2

=4a6-b4.

教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算。

课堂练习

运用平方差公式计算:

(l)(x+a)(x-a); (2)(m+n)(m-n);

(3)(a+3b)(a-3b); (4)(1-5y)(l+5y).

例3 计算(-4a-1)(-4a+1).

让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演。

解法1:(-4a-1)(-4a+1)

=[-(4a+l)][-(4a-l)]

=(4a+1)(4a-l)

=(4a)2-l2

=16a2-1.

解法2:(-4a-l)(-4a+l)

=(-4a)2-l

=16a2-1.

根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果。解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果。采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷。因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案。

课堂练习

1.口答下列各题:

(l)(-a+b)(a+b); (2)(a-b)(b+a);

(3)(-a-b)(-a+b); (4)(a-b)(-a-b).

2.计算下列各题:

(1)(4x-5y)(4x+5y); (2)(-2x2+5)(-2x2-5);

教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法。

三、小结

1.什么是平方差公式?

2.运用公式要注意什么?

(1)要符合公式特征才能运用平方差公式;

(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形。

四、作业

1.运用平方差公式计算:

(l)(x+2y)(x-2y); (2)(2a-3b)(3b+2a);

(3)(-1+3x)(-1-3x); (4)(-2b-5)(2b-5);

(5)(2x3+15)(2x3-15); (6)(0.3x-0.l)(0.3x+l);

2.计算:

(1)(x+y)(x-y)+(2x+y)(2x+y); (2)(2a-b)(2a+b)-(2b-3a)(3a+2b);

(3)x(x-3)-(x+7)(x-7); (4)(2x-5)(x-2)+(3x-4)(3x+4).

高一数学优秀教案篇6

《平面向量的基本定理及坐标表示》教案

教学准备

教学目标

1、理解平面向量的坐标的概念;

2、掌握平面向量的坐标运算;

3、会根据向量的坐标,判断向量是否共线。

教学重难点

教学重点:平面向量的坐标运算

教学难点:向量的坐标表示的理解及运算的准确性。

教学过程

平面向量基本定理:

什么叫平面的一组基底?

平面的基底有多少组?

引入:

1.平面内建立了直角坐标系,点A可以用什么来

表示?

2.平面向量是否也有类似的表示呢?

高一数学优秀教案篇7

《平面向量应用举例》教案

教学准备

教学目标

1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何的问题的”三步曲”;

2.明确平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示。;

3.让学生深刻理解向量在处理平面几何问题中的优越性。

教学重难点

教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”。

教学难点:如何将几何等实际问题化归为向量问题。

教学过程

由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题,下面我们通过几个具体实例,说明向量方法在平面几何中的运用。

例1、平行四边形是表示向量加法与减法的几何模型。如图,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?

思考:

运用向量方法解决平面几何问题可以分哪几个步骤?

运用向量方法解决平面几何问题可以分哪几个步骤?

“三步曲”:

(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;

(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;

(3)把运算结果“翻译”成几何关系。

高一数学优秀教案篇8

《平面向量的线性运算》教案

教学准备

教学目标

1、掌握向量的加法运算,并理解其几何意义;

2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;

3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;

教学重难点

教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量。

教学难点:理解向量加法的定义。

教学工具

投影仪

教学过程

一、设置情景:

1、复习:向量的定义以及有关概念

强调:向量是既有大小又有方向的量。长度相等、方向相同的向量相等。因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置

从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行。

三、应用举例:

例二(P94—95)略

练习:P95

四、小结

1、向量加法的几何意义;

2、交换律和结合律;

3、注意:当且仅当方向相同时取等号。

五、课后作业:

P103第2、3题

课后小结

1、向量加法的几何意义;

2、交换律和结合律;

3、注意:|a+b| ≤ |a| + |b|,当且仅当方向相同时取等号。

课后习题

作业:

P103第2、3题

板书

高一数学优秀教案篇9

一、指导思想:

使学生在九年义务教育数学课程的基础之上,进一步提高高一学生所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的。理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书·数学》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3、“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教法分析:

1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

四、学情分析:

1、基本情况:高一28班共1600人,男生850人,女生750人;相对而言,数学尖子约60人,中上等生约180人,中等生约580人,中下生约400人,后进生约380人。

2、其中特尖班一个(理科),文科导读班一个,理科导读班6个,成绩较好。文科普通班6个,理科普通班15个学习情况一般,而学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

六、教学进度安排

拓展:高一数学必修4公式

一)两角和差公式 (写的都要记)

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

二)用以上公式可推出下列二倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

(上面这个余弦的很重要)

sin2A=2sinA*cosA

三)半角的只需记住这个:

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)

四)用二倍角中的余弦可推出降幂公式

(sinA)^2=(1-cos2A)/2

(cosA)^2=(1+cos2A)/2

五)用以上降幂公式可推出以下常用的化简公式

1-cosA=sin^(A/2)*2

1-sinA=cos^(A/2)*2

高一数学优秀教案篇10

教学准备

教学目标

1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;

2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;

归纳——猜想——证明的数学研究方法;

3、数学思想:培养学生分类讨论,函数的数学思想。

教学重难点

重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;

难点:等比数列的性质的探索过程。

教学过程

教学过程:

1、问题引入:

前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?

(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(第一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)

2、新课:

1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。

师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?

师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

公式的推导:(师生共同完成)

若设等比数列的公比为q和首项为a1,则有:

方法一:(累乘法)

3)等比数列的性质:

下面我们一起来研究一下等比数列的性质

通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。

问题4:如果{an}是一个等差数列,它有哪些性质?

(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:

3、例题巩固:

例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。

答案:1458或128。

例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3…a20=10.

例3、已知一个等差数列:2,4,6,8,10,12,14,16,……,2n,……,能否在这个数列中取出一些项组成一个新的数列{cn},使得{cn}是一个公比为2的等比数列,若能请指出{cn}中的第k项是等差数列中的第几项?

(本题为开放题,没有的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)

1、小结:

今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习

我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。

2、作业:

P129:1,2,3

思考题:在等差数列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些项:6,12,24,48,……,组成一个新的数列{cn},{cn}是一个公比为2的等比数列,请指出{cn}中的第k项是等差数列中的第几项?

教学设计说明:

1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。

2、教学设计过程:本节课主要从以下几个方面展开:

1)通过复习等差数列的定义,类比得出等比数列的定义;

2)等比数列的通项公式的推导;

3)等比数列的性质;

有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧

知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。

在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。

在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。

通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。

等比性质的研究是本节课的,通过类比

关于例题重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。

高一数学优秀教案篇11

《标准差与方差》数学教案设计

教学目标

1、掌握用计算器求平均数、标准差与方差的方法。

2、会用计算器求平均数、标准差与方差。

教学建议

重点、难点分析

1、本节内容的重点是用计算器求平均数、标准差与方差,难点是准确操作计算器。

2、计算器上的标准差用表示,和教科书中用S表示不一样,但意义是一样的。而计算器上的S和我们教科书上的标准差S意义不一样。在计算器上S和是并排在一起的,按同一键,都是统计计算用的。因S在前,在后,这样要想显示出标准差,就需要发挥该键的统计功能中第二功能,于是就得先按键,再按键。

教学设计示例1

素质教育目标

(一)知识教学点

使学生会用计算器求平均数、标准差与方差。

(二)能力训练点

培养学生正确使用计算器的能力。

(三)德育渗透点

培养学生认真、耐心、细致的学习态度和学习习惯。

(四)养育渗透点

通过本节课的教学,渗透了用高科技产品求方差值的简单美,激发学生的学习兴趣,丰富了学生具有数学美的底蕴。

重点·难点·疑点及解决办法

1.教学重点:用计算器进行统计计算的步骤。

2.教学难点:正确输入数据。

3.教学疑点:学生容易把计算器上的键S主认为是书上的标准差S,教科书中的符号S与CZ1206计算器上的符号S的意义不同,而与计算器上的符号 相同。

4.解决办法:首先使计算器进入统计计算状态,再将一些数据输入,按键得出所要求的统计量。

教学步骤

(一)明确目标

请同学们回想一下,我们已学过用科学计算器进行过哪些运算?(求数的方根、求角的

三角函数值等),那么用计算器和用查表进行这些运算在运算速度、准确性等方面有什么不

同,(计算器运算速度快、准确性高,查表慢,且准确性低).这节课我们将要学习用计算器进行统计运算。它会使我们更能充分体会到用计算器进行运算的优越性。

这样开门见山的引入课题,能迅速将学生的注意力集中起来,进入新课的学习。

(二)整体感知

进行统计运算,是科学计算器的重要功能之一。一般的科学计算器,都含有统计计算功

能,教科书以用CZ1206计算器进行统计计算为例说明计算方法。用CZ1206计算器进行统计计算,一般分成三步:建立统计运算状态,输入数据,按键得出所要求的统计量。这些统计量除了平均数 、标准差 外,还有数据个数n,各数据的和 ,各数据的平方和 .衡量一组数据的波动大小的另一个量S.计算器上的键S,并不表示教科书上的标准差S.

(三)教学过程

教师首先讲清解题的三个步骤,第一步建立统计运算状态。方法:在打开计算器后,先按键2ndF、STAT,便使计算器进入计计算状态。第二步输入数据,其过程一定要用表格显示输入时,每次按数据后再按键DATA.表示已将这个数据输入计算器。这时显示的数,是已输入的数据的累计个数,表中所有数据输入后显示的数为8,表明所有数据的个数(样本容量)为8,如果有重复出现的数据,如有7个数据是3,那么输入时可按3×7(前面是输入的数据,后面是输人数据的个数).第三步按一下有关的键,即可直接得出计算结果。

在教师讲情操作要领的基础上,(把学生分成两组)让学生自己操作,用计算器求14.3节例1中两组数据的`平均数、标准差与方差。

在学生操作过程中,教师要指导学生每输入一个数据,就检查一下计算器上的显示是否与教科书的表格一致,如发现刚输入的数据有误,可按键DEL将它清除,然后继续往下输入。

教师还要指出教科书上的符号S与CZ1206型计算器上的符号S的 .com …意义不同,而与该计算器上的符号 相同,在CZ1206型计算器键盘上,用 表示一组数据的标准差。由于这个计算器上未单设方差计算键,我们可以选按键 ,然后将它平方,即按键× = ,就得到方差值 .

(四)总结、扩展

知识小结:

通过本节课的学习,我们学会了用科学计算器进行统计运算。在运算中,要注意操作方

法与步骤,由于数据输入的过程较长,操作时务必仔细,避免出错,在用计算器进行统计计算的前提下,可通过比较两组数据的标准差来比较它们的波动大小,而不必再转到相应方差的比较。

方法小结:用CZ1206型计算器进行统计运算。一般分成三步:建立统计运算状态,输入数据,按键得出所要求的统计量。

布置作业

教材P179中A组

板书设计

随堂练习

用计算器计算下列各组数据的平均数和方差、标准差

1.60,40,30,45,70,58

2.9,8,7,6,9,7,8

用计算器求平均数、标准差与方差” 用计算器求平均数、标准差与方差”

高一数学优秀教案篇12

《两角和与差的正弦、余弦和正切公式》教案

教学准备

教学目标

理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用。

教学重难点

1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;

2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用。

教学过程

高一数学优秀教案篇13

本文题目:高一数学教案:函数的奇偶性

课题:函数的奇偶性

一、三维目标:

知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。

过程与方法:通过设置问题情境培养学生判断、推断的能力。

情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操。 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。

二、学习重、难点:

重点:函数的奇偶性的概念。

难点:函数奇偶性的判断。

三、学法指导:

学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。

四、知识链接:

1、复习在初中学习的轴对称图形和中心对称图形的定义:

2、分别画出函数f (x) =x3与g (x) = x2的图象,并说出图象的对称性。

五、学习过程:

函数的奇偶性:

(1)对于函数 ,其定义域关于原点对称:

如果,那么函数 为奇函数;

如果,那么函数 为偶函数。

(2)奇函数的图象关于对称,偶函数的图象关于对称。

(3)奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 。

六、达标训练:

A1、判断下列函数的奇偶性。

(1)f(x)=x4;(2)f(x)=x5;

(3)f(x)=x+ (4)f(x)=

A2、二次函数 ( )是偶函数,则b= 。

B3、已知 ,其中 为常数,若 ,则

B4、若函数 是定义在R上的奇函数,则函数 的图象关于 ( )

(A) 轴对称 (B) 轴对称 (C)原点对称 (D)以上均不对

B5、如果定义在区间 上的函数 为奇函数,则 = 。

C6、若函数 是定义在R上的奇函数,且当 时, ,那么当

时, = 。

D7、设 是 上的奇函数, ,当 时, ,则 等于 ( )

(A) (B) (C) (D)

D8、定义在 上的奇函数 ,则常数 , 。

七、学习小结:

本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。

八、课后反思:

推荐访问:高一 教案 优秀 高一数学优秀教案设计 高一数学优秀教案ppt 高一数学优秀教案书 高一数学优秀教案人教版 高一数学优秀教案模板 高一数学优秀教案全册 高一数学优质教案 高一数学教案大全 高一数学教案详案范文 高一数学教案电子版免费